首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61374篇
  免费   5922篇
  国内免费   4216篇
电工技术   2140篇
综合类   4579篇
化学工业   14851篇
金属工艺   7819篇
机械仪表   3491篇
建筑科学   5518篇
矿业工程   977篇
能源动力   2019篇
轻工业   3309篇
水利工程   513篇
石油天然气   1226篇
武器工业   734篇
无线电   5347篇
一般工业技术   15160篇
冶金工业   1804篇
原子能技术   492篇
自动化技术   1533篇
  2024年   170篇
  2023年   809篇
  2022年   1416篇
  2021年   1804篇
  2020年   1899篇
  2019年   1657篇
  2018年   1597篇
  2017年   2212篇
  2016年   2248篇
  2015年   2184篇
  2014年   2974篇
  2013年   3317篇
  2012年   4121篇
  2011年   4658篇
  2010年   3551篇
  2009年   3801篇
  2008年   3170篇
  2007年   4326篇
  2006年   4067篇
  2005年   3371篇
  2004年   2869篇
  2003年   2532篇
  2002年   2137篇
  2001年   1916篇
  2000年   1611篇
  1999年   1302篇
  1998年   1100篇
  1997年   914篇
  1996年   798篇
  1995年   695篇
  1994年   598篇
  1993年   508篇
  1992年   330篇
  1991年   251篇
  1990年   153篇
  1989年   125篇
  1988年   90篇
  1987年   57篇
  1986年   19篇
  1985年   25篇
  1984年   26篇
  1983年   12篇
  1982年   19篇
  1981年   7篇
  1980年   20篇
  1979年   14篇
  1963年   3篇
  1959年   5篇
  1956年   3篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 216 毫秒
11.
A superhydrophobic ceria-based composite coating is developed to improve anticorrosion properties of AZ61 magnesium alloy, fabricating via chemical conversion method followed by hydrothermal treatment. The cerium conversion coating has a block structure with microcracks. After the hydrothermal treatment, a dense CeO2 layer, porous CeO2 nanorods, and stearic absorbing layers are grown stepwise on the conversion coating. And the composite coating is hydrophobic or even superhydrophobic and has almost no microcracks. As the hydrothermal reaction time increases, the water contact angle of the composite coating first increases and then decreases, and it reaches the maximum value of 152° after hydrothermal treatment for 4 h. Both the dense CeO2 layer and the superhydrophobic stearic absorbing layer can effectively prevent the electrolyte from contacting the substrate; the corrosion current density of the superhydrophobic composite coating is lower than that of the hydrophilic composite coating and the cerium conversion coating, and has the best corrosion resistance.  相似文献   
12.
Ceramic matrix composites (CMC) are highly required in many fields of science and engineering. However, the CMC parts always have poor surface finish. This study attempts to improve cutting performance of CMC material by combing the advantages of ultrasonic assisted cutting and diamond wire sawing. Cutting force, surface roughness, machined edge and tool wear are analyzed based on experimental results. It shows that the oscillatory movement of tool edges provides positive effect on particle ejection and residual material reduction. Ductile chip formation can be achieved due to the small tip radius of grits. Obvious decrease in cutting force, surface roughness and tool wear are obtained. Moreover, burrs, fuzzing and fracture are reduced. Meanwhile, both the surface characteristics and shape accuracy are significantly improved. These results provide a valuable basis for application of ultrasonic assisted wire sawing and understanding of CMC cutting mechanisms.  相似文献   
13.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
14.
Ca3Co4O9 is a promising p-type thermoelectric oxide material having intrinsically low thermal conductivity. With low cost and opportunities for automatic large scale production, thick film technologies offer considerable potential for a new generation of micro-sized thermoelectric coolers or generators. Here, based on the chemical composition optimized by traditional solid state reaction for bulk samples, we present a viable approach to modulating the electrical transport properties of screen-printed calcium cobaltite thick films through control of the microstructural evolution by optimized heat-treatment. XRD and TEM analysis confirmed the formation of high-quality calcium cobaltite grains. By creating 2.0 at% cobalt deficiency in Ca2.7Bi0.3Co4O9+δ, the pressureless sintered ceramics reached the highest power factor of 98.0 μWm?1 K-2 at 823 K, through enhancement of electrical conductivity by reduction of poorly conducting secondary phases. Subsequently, textured thick films of Ca2.7Bi0.3Co3.92O9+δ were efficiently tailored by controlling the sintering temperature and holding time. Optimized Ca2.7Bi0.3Co3.92O9+δ thick films sintered at 1203 K for 8 h exhibited the maximum power factor of 55.5 μWm?1 K-2 at 673 K through microstructure control.  相似文献   
15.
The wearable intelligent electronic product similar to electronic skin has a great application prospect. However, flexible electronic with high performance pressure sensing functions are still facing great challenges. In this paper, the highly sensitive flexible electronic skin (FES) based on the PVDF/rGO/BaTiO3 composite thin film was fabricated using the near-field electrohydrodynamic direct-writing (NFEDW) method. The PVDF/rGO/BaTiO3 composite solution was directly written on flexible substrate by the NFEDW method to fabricate FES with micro/nano fiber structure, which has the function of sensing pressure with high sensitivity and fast response. The surface morphology and microstructure were characterized by SEM, AFM, and optical microscope in detail. The fabricated FES has high sensitivity (59 kPa−1) and faster response time (130 ms). FES has been successfully applied to the detection of human motion and subtle physiological signals. The experimental results show that FES has good stability and reliability. FES can recognize human motion, and it has a broad application prospect in the field of wearable devices.  相似文献   
16.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   
17.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
18.
Graphene-based heterostructure composite is a new type of advanced sensing material that includes composites of graphene with noble metals/metal oxides/metal sulfides/polymers and organic ligands. Exerting the synergistic effect of graphene and noble metals/metal oxides/metal sulfides/polymers and organic ligands is a new way to design advanced gas sensors for nitrogen-containing gas species including NH3 and NO2 to solve the problems such as poor stability, high working temperature, poor recovery, and poor selectivity. Different fabrication methods of graphene-based heterostructure composite are extensively studied, enabling massive progress in developing chemiresistive-type sensors for detecting the nitrogen-containing gas species. With the components of noble metals/metal oxides/metal sulfides/polymers and organic ligands which are composited with graphene, each material has its attractive and unique electrical properties. Consequently, the corresponding composite formed with graphene has different sensing characteristics. Furthermore, working ambient gas and response type can affect gas-sensitive characteristic parameters of graphene-based heterostructure composite sensing materials. Moreover, it requires particular attention in studying gas sensing mechanism of graphene-based heterostructure composite sensing materials for nitrogen-containing gas species. This review focuses on related scientific issues such as material synthesis methods, sensing performance, and gas sensing mechanism to discuss the technical challenges and several perspectives.  相似文献   
19.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
20.
《Ceramics International》2022,48(10):13524-13530
Thin film sensors are employed to monitor the health of hot-section components of aeroengine intelligence (for instance, blades), and electrical insulating layers are needed between the metal components and thin film sensors. For this purpose, the electrical insulation characteristics of an yttria-stabilized zirconia (YSZ)/Al2O3 multilayer insulating structure were investigated. First, YSZ thin films were deposited by DC reactive sputtering at various substrate temperatures, and the microstructural features were investigated by scanning electron microscopy and X-ray diffraction. The results indicate that the micromorphology of the YSZ thin film gradually became denser with increasing substrate temperature, and no new phases appeared. The compact and uniform topography of the YSZ thin film improved the insulation properties of the multilayer insulating structure and enhanced the adhesion of the thin film sensors. In addition, the electrical insulation properties of the YSZ/Al2O3 multilayer insulating structure were evaluated via insulation resistance tests from 25 to 800 °C, in which the YSZ thin film was deposited at 550 °C. The results show that the insulation resistance of the multilayer structure increased by an order of magnitude compared with that of the conventional Al2O3 insulating layer, reaching 135 kΩ (5.1 × 10?6 S/m) at 800 °C. Notably, the insulation resistance was still greater than 75 kΩ after annealing at 800 °C for 5 h. Finally, the shunt effect of the YSZ/Al2O3 multilayer insulating structure was estimated using a PdCr thin film strain gauge. The relative resistance error was 0.24%, which demonstrates that the YSZ/Al2O3 multilayer insulating structure is suitable for thin film sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号